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The global COVID-19 pandemic that has unfolded around the world over the last six months has drawn 

attention towards quantitative mathematical modelling as never before. Government policymakers and 

the general public alike are looking towards science, and modelling in particular, to understand the 

complex dynamics of the epidemic from local to global perspectives, as well as to project the impact of 

possible interventions on numbers of cases, hospitalizations and deaths. Modelling has played a crucial 

role, as we have witnessed in daily updates from our chief medical officers, government officials and 

elected leaders.  

  

A particularly noteworthy example is the model used by Neil Ferguson and colleagues from Imperial 

College, London, to advise the UK government of the likely impact of allowing the disease to spread 

unchecked [1]. The changes in policy towards social distancing, influenced by these modelling results, 

almost certainly saved thousands of lives in the UK and supported the adoption of similar policies in the 

USA.  

  

The information flowing from any model is limited, and many (indeed most) modelling groups are quick 

to point out the shortcomings of their own work and those of others. The highly influential Imperial 

College model relied on estimates of parameters that were, and still are deeply uncertain.  

  

Should we be concerned? That depends on what we care about. If we care about devising short-term 

strategies to combat the most devastating pandemic in recent history, then the short answer is “no.” The 

Imperial College model, and others like it, have amply demonstrated the need for social distancing and 

the catastrophic consequences of not doing so, a beautiful illustration of the often-repeated mantra: “All 

models are wrong, but some models are useful.” However, if we care about making more accurate long-

term predictions so we can plan how to restart the economy, the answer is “we can do better.”  We can 

do better because we now have more data, which allows us to develop new kinds of models.  

  

Mathematical models for infectious disease dynamics have been around for a long time.  Mathematician 

Daniel Bernoulli developed a dynamical model for smallpox transmission and control in 1760 [2]. Ronald 

Ross, a medical doctor and Nobel Prize winner with mathematical inclinations, developed a mathematical 

theory for the outbreak dynamics of malaria in 1911 [3].   

  

Two decades later, W.O. Kermack and A.G. McKendrick collaborated to develop a new theory of 

infectious disease transmission [4]. Their model broke up the population into susceptible (S), infected (I) 

and recovered/removed (R) groups. This allowed them to focus on the rates of transfer of people 

between groups based on the biological course of infection, transforming S-individuals into I-individuals 

and eventually to the R group.  

  

The SIR model employed a very simple idea: that of infection by “mass action,” which is akin to assuming 

that each random encounter between susceptible individuals and infected individuals has a certain 
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chance of resulting in new infection. They used their model to achieve a new understanding of the 1906 

Bombay plague epidemic.  

  

This style of “compartmental modelling” has stuck with us, and the basics are taught to epidemiologists 

and applied mathematicians in undergraduate classes around the world. Although the approach is simple, 

it has been remarkably successful in explaining patterns of infection outbreak, including outbreaks of the 

flu in British boarding schools. Extensions include more classes of individuals (e.g., Exposed, Quarantined 

or Asymptomatic), as well as differential risks for different groups (e.g., those with differential risk of 

contracting AIDS based on sexual encounters). Indeed, the structure of many modern epidemic models 

for COVID-19 are based on modifications of the SEIR compartmental structure, with the additional 

Exposed class inserted between Susceptible and Infected.  

  

These models give rise to a key concept in the study of epidemics, the basic reproduction number (R0), 

which is the average number of new infections coming from a single infected individual.  R0 larger than 

one means the disease can grow exponentially, with possibly devastating consequences. However, R0 

smaller than one means the disease should die out. Thus, reducing R0 becomes an essential management 

goal. For the Kermack-McKendrick model, R0 is the rate at which a single infected individual infects others, 

multiplied by the period of infectiousness. Social distancing can reduce the first, while quarantining 

shortens the second. Both control strategies therefore become powerful methods to reduce R0 and 

hence to drive down disease levels. However, the value of R0 can change daily in step with changes in 

social policies. Thus, when daily case counts are available, we can compute the daily values of R0 that 

make the model outputs closest to the measured data. This process, called model fitting, is how most 

published estimates of R0 for the COVID-19 pandemic have been produced. By simultaneously fitting 

essential parameters to available data, the model gradually becomes a tool for projecting the future 

course of the epidemic. In the current context, we can use this approach to make projections of 

hospitalization or intensive care admission rates during the epidemic, and to advise officials to prepare 

accordingly. 

  

One would be tempted to think that the more realistic a model is, the better it is.  So, if we want better 

dynamical models, should we just make them more complicated? Here, a classic dilemma of modelling 

arises.  The more realistic, and therefore complex, a model is, the more uncertain the outcome. This is 

because the behaviour of a complex model depends upon a myriad of detailed input parameters, many of 

which are unknown or only known approximately. Indeed, there is always a trade-off between accuracy 

(how realistically the model incorporates all the different possible inputs) and precision (the level of 

certainty associated with the model predictions). The problem with COVID-19 is that some parameters, 

such as level of social distancing, can be highly variable, changing from location to location and from week 

to week. Other parameters, such as the fraction of infected people who do not develop symptoms, can 

be difficult to measure. These issues make model fitting extremely challenging.  Indeed, connecting the 

models to data and assessing uncertainty are the most time-consuming and intricate parts of a modelling 

project. 

  

Can models tell us what groups are the most vulnerable?  Where are the weak links in our public health 

systems?  The urgency of these questions explains why we need to develop methods to assess risks 
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before all the evidence is in. Across Canada, many care facilities for elderly people have been inundated 

by COVID-19, with tragic consequences, while others have escaped unscathed.  In Alberta, provincial 

statistics for numbers of cases have been heavily impacted by two meat-packing plants and, as of early 

May, these community-scale outbreaks are linked to over one quarter of all reported COVID-19 cases in 

the province. Similar outbreaks in meat-processing plants have occurred in British Columbia, but many 

nearby plants have so far avoided infections at this level.  

  

The details of such events cannot be predicted with certainty.  Here, we can seek answers from much 

more complex models that seek to simulate human activity within a computer. Such geographically and 

socially structured detailed models have previously been developed to predict the spread of pandemic 

influenza across the USA [5], and the spread of Dengue virus in Southeast Asia [6]. In hindsight, with 

respect to COVID-19 mathematical models could and should have done much better in this regard. To do 

better, modellers need to use knowledge and data about the locations, sizes and working conditions 

within gathering spaces such as factories, prisons and care facilities. This represents a departure from the 

compartmental paradigm of modelling, where these details are often overlooked in favour of averaging 

over a whole population.  

  

What about so-called “super-spreader” events?  A single 38-year-old patient may have been the first 

COVID-19 case in Lombardy, a region of Italy at the epicentre of the European outbreak.  Italian 

prosecutors have opened an investigation as to whether delay in his treatment could have triggered a 

substantial initial surge of infections.  Similarly, a large fraction of all cases in South Korea can be linked 

back to a single church. Studies modelling the impact of super-spreaders on COVID-10 [7], as well as other 

respiratory diseases such as SARS and influenza, have shown the immense impact of these unpredictable 

events on disease outcomes.  Although we can predict impacts, we are not able to answer the key 

question for control, which is when and where such events will occur. 

  

To improve the predictive power of mathematical models, we need detailed and rapid data sharing 

between public health agencies and modelling teams. The data needed depend on the problem to be 

studied. To understand the rate of spread of the disease among different populations, we need detailed 

information around the timing of symptom onset, testing, and self-isolation among infected people. To 

understand relative risks among different age groups, these data must be age-stratified. If we wish to 

understand the importance of facility outbreaks overlaid on a background of community transmission, we 

need geographical details of home, work, and events where transmission may be occurring. These data 

need to be explored by bringing public health officials and modelling teams together, to build 

understanding of the limitations of field data collection, but also the possibilities that are opened by rapid 

and detailed data provision. 

  

However, beyond the need for high-quality data, mathematical modelling teams should seek to expand 

their toolkits to include methods and information streams from outside the classical epidemiology and 

public health arenas. For example, there have been rapid developments in machine learning and artificial 

intelligence. These techniques feed on data and generate predictions without making assumptions about 

mechanisms or hypotheses. As large data sets become available (for instance from much-touted 

smartphone tracking apps tailored to COVID-19 risk assessment), these methods may become powerful, if 
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blinkered, tools for making short-term predictions. Because the goal of machine learning is simply to 

predict patterns based on data, approaches that build, for instance, tools to assess credit risk, could also 

be applied to determine which cities or populations are most at risk.  

  

As a second example, econometricians and government statisticians possess truly impressive amounts of 

data around business and economic activity, as well as models that can be brought into service alongside 

epidemiological predictions as we seek to loosen restrictions and reopen our economies. When business 

sectors return to normal operations, which other sectors are their key suppliers and their essential 

customers? What if these sectors operate in another province or another country? Which economic 

sectors and specific businesses have working conditions that pose the greatest risks of driving 

transmission in the workplace? Which sectors have many employees over 60 years of age, who are 

therefore at greater risk of serious illness? How well should we expect employees to respect instructions 

to stay away from work or seek testing if they have mild symptoms? Teams engaged in mathematical 

modelling of de-escalation should be ready to work with economists and detailed statistical data to 

understand the complex interplay between economic activity and disease spread. 

  

There is an unprecedented push by scientists worldwide to use mathematical models to understand the 

workings of COVID-19 spread. The models are being used to make life and death decisions, and Canadians 

have been at the forefront of the effort, with outstanding groups of researchers working tirelessly.  Any 

successes that the models have in understanding our present predicament owe a debt of gratitude to the 

painstaking work made by generations of previous mathematical epidemiologists. While a lot has been 

accomplished in generating new understanding about the initial wave of infection, we still have much 

work to do, and we can continue to do better. 
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