Avril 2018

Message du Président - Mot de bienvenue

The Power of a Parent's Touch - Marsha Campbell-Yeo

Virophysics - Catherine Beauchemin

***

Message du Président - Mot de bienvenue

Chers et chères collègues de l’académie des sciences de la SRC,

Vijaya RaghavanDans mon premier message qui vous est adressé en tant que président de l’académie des sciences, je voudrais vous souhaiter une florissante année 2018 et accueillir encore une fois chaleureusement les nouveaux membres. Janvier et février sont passés, l’année avance, et nos activités aussi. Alors que la SRC entame sa 136e année, et avec l’arrivée de transformations technologiques, démographiques et politiques, il est temps de redéfinir nos objectifs pour réaliser des changements réalistes en vue d’un avenir meilleur pour la société. Grâce aux nombreuses ressources fournies par la SRC au cours des dix dernières années,  nous sommes plus que jamais prêts à contribuer pour faire la différence. Tout en se tournant vers l’avenir en vue de s’adapter et d’optimiser notre impact, nous avons principalement discuté, ces deux dernières années, du développement d’un plan stratégique quinquennal pour 2018-2022. L’importance de la communication entre la science et la société, le développement personnel, la promotion de sujets complexes et le leadership, à la fois au niveau national et international, ont été inclus dans les discussions qui ont mené au développement du plan stratégique. Au cours des cinq prochaines années, nous mobiliserons nos membres, stimulerons de nouvelles contributions et soutiendrons l’élan de la SRC. Nous devons tous contribuer activement, et je vous encourage tous à participer aux occasions de tenir un rôle de leader afin d’influencer les discussions au cours de la prochaine convention du G7 qui se tiendra à La Malbaie au Québec, du 8 au 9 juin. Veuillez rester attentifs au document du plan stratégique qui détaille plus amplement nos objectifs pour les cinq prochaines années.

Lors de notre dernière assemblée générale en novembre 2017, nous avons pu suivre les présentations de douze nouveaux membres. Cet atelier, qui pourrait devenir la norme dans les prochaines années, et judicieusement appelé le « Café innovant », a souligné l’important travail effectué par nos nouveaux membres dans différents domaines scientifiques et mis l’accent sur la manière dont le génie et la science s’entremêlent pour atteindre la durabilité. Je pourrais classer ces présentations en trois thèmes majeurs : la Terre, le Numérique et le Bien-être. Dans le bulletin suivant, je partage avec vous les résumés de ces présentations soumises par les nouveaux membres. Vous verrez qu’ils fournissent un aperçu à propos de questions persistantes, telles que : Comment la Terre s’est-elle formée ? Comment l’information et la communication au niveau quantique se façonnent-elles et continuent-elles à influencer le monde ? Les relations humaines sont-elles importantes pour la vie quotidienne et la survie, et ces sujets sont-ils « scientifiques » ? Existe-t-il un réel soutien scientifique à la puissance du toucher d’un parent ? Qu’est-ce qui définit la relation immunologique entre une mère et son enfant ? Peut-on juguler le cancer et améliorer l’état de santé en général, et quelles sont les autres fonctions de ce qu’on appelle l’ARN « poubelle » ? Comment la physique peut-elle aider la biologie ? Les deux premiers articles se trouvent dans ce bulletin. Le premier article a été rédigé par Marsha Campbell-Yeo, qui traite de la puissance du toucher d’un parent. Ce sujet est d’une importance cruciale pour la société étant donné qu’une douleur mal gérée chez les bébés provoque des conséquences graves chez l’adulte qui peuvent affecter leurs relations et même le développment de leur cerveau.  Dans son texte, Masha indique que la médication n’est pas toujours la meilleure ou la bonne réponse. De nombreux médicament efficaces chez les adultes ne le sont pas chez les bébés, et c’est là qu’interviennent les services intensifs néonataux. Veuillez lire l’article dans son intégralité ici. Le deuxième article est la transcription de la présentation donnée par Catherine Beauchemin et revêt une importance tout aussi essentielle car elle traite de la fusion entre les sciences physiques et les sciences de la vie. De nouveau, l’ère numérique est à nos portes, et l’importance des modèles ne peut certainement pas être exagérée. La “physique virale”, comme la nomme Catherine, écoute les virologues et les microbiologistes et traduit leurs discours en modèles. Il s’agit d’un énorme bond en avant pour la caractérisation des souches virales mortelles et le traitement ou la gestion de la résistance aux médicaments. Pensez aux possibles implications pour le VIH et autres virus mortels récalcitrants. Vous apprécierez lire l’article de Catherine ici.

Enfin, mon message d’introduction ne serait pas complet si je ne remerciais pas le secrétariat de la SRC pour son administration efficace des différentes académies qui reposent sur de nombreux groupes de réflexions. Je voudrais également remercier le président sortant, Jamal Deen, pour avoir permis une transition douce, en suivant la tradition des autres présidents sortants. Jamal a accompli de nombreuses tâches pendant son mandat, dont : 

- Engagement actif dans de nombreux comités et conseils de l’académie des sciences (Group picture from Keith Hipel) or (hyperlink or actual photos)

- Création du comité des anciens présidents

- Accroissement du nombre de membres dans tous les comités

- Implication du PFST avec plusieurs réunions et sept présentations à l’académie des sciences

- Création de lignes directrices pour l’évaluation des membres étrangers

- Coordination avec le Conseil de la SRC

- Etablissement de relations internationales, rencontres et présentations majeures aux Etats-Unis, aux Philippines et à l’ambassade du Japon

Jamal DeenVeuillez lire le rapport détaillé des activités du président sortant ici.

Comme mentionné précédemment, la participation est essentielle à la programmation des activités de la SRC. Les prochaines activités de la SRC sont reprises ici. J’encourage fortement tous les membres de l’académie des sciences à apporter leurs idées novatrices en rédigeant des articles pour le bulletin de notre académie.

Il est temps de mobiliser, stimuler et soutenir.

 

The Power of a Parent's Touch - Marsha Campbell-Yeo

Marsha Campbell-YeoI went to work in the IWK's neonatal intensive care unit (or NICU) more than 25 years ago because I loved the fast pace, the adrenalin rush, and the idea of saving lives using high tech care. To me, providing best care for babies was all about the best technology had to offer. While it’s certainly true that the babies who survive today, did not survive when I first started -- the bad news is that it comes with being exposed to many necessary medical procedures. Now, as an associate professor and clinician scientist, I wanted to find ways to decrease the pain and stress often associated with the life-saving technology. 

So why pain? To help answer this question, I want you to meet Jack, a typical baby cared for in our NICU. Jack was born 4 months early, weighed just over 1 and a half pounds, and spent 118 days in the NICU. There, he endured over 1,100 procedures like heel pokes, intravenous insertion, and blood collections. It may come as a shock to most people that 3 decades ago, it was widely believed that babies did not feel or remember pain.  In fact babies even underwent surgery without pain medication simply receiving medications to keep them from moving.  I know that’s hard to believe. Today we know babies do feel pain and remember pain. We are learning that untreated pain can also impact how babies react to pain later in life, how they think, form relationships, and even how their brains develop. 

Sadly, recent studies tell us that less than half of babies in Canada and the world do not receive any pain relief for these procedures. Sadly, solutions are not that easy… medications are not always the simple answer, many drugs that work for adults don't work for babies. We had to find other ways… We realized our world had become so reliant on specialized drugs and technology, we were underutilizing our most important resource: parents. So you may ask yourself what's so innovative about a parent's comforting touch? I would actually argue that in the NICU it truly is a new direction in the way we have provided care. 

Remember Jack? In addition to his pain he also experienced more than 2,000 hours of maternal separation, which was both stressful for him and his mom. So how could parents help? Together, with my team and the support of a world-leader in neonatal pain, Dr. Celeste Johnston, we conducted several studies to test simple parent strategies like the upright holding of a diaper clad baby on the bare chest of a mother, which is called skin-to-skin contact or kangaroo care. Seems natural, right? But this wasn't happening. Through our research we found incredible things.  Human touch for babies provided during routine procedures like heel pokes and needles, decreased how a baby felt and responded to pain. Touch stabilized their heart rates and the amount of oxygen in their bodies, and helped them recover faster after the procedure was over. We conducted studies with fathers, other women like grandmothers or aunts, and even tested whether a baby’s preterm twin could help reduce the stress associated with these procedures. We determined that it wasn’t 

just a mother’s contact that could help. Human touch was the answer and we determined that these interventions remained effective over a babies entire hospital stay. And the best part was, it helped parents too. Parents told us that it made them feel closer to their baby.  It made them feel better; they felt less stressed, more in control and confident.   Now we are testing the effects of maternal led interventions on the brain and potential longer lasting benefits. We wanted to find ways to tell other scientists and clinicians about what we and others had found. So we created a synthesis of all the science that had been done around the world about skin-to-skin contact and pain relief. We included 25 clinical trials, almost a third conducted by our team in Nova Scotia. Each reaffirmed the benefits of human touch. 

However, we needed to tell parents too, as most don't realize how powerful their touch could be.  So I created a parent friendly two-minute YouTube video “Power of a parents touch” which has now been viewed over 186,000 times in more than 152 countries and has been translated into fourteen languages. We now know parent led interventions are safe, free, natural, and effective. They benefit babies, moms and families and can be done at home or in hospital. Our new challenge was finding ways to ensure our science actually changed care locally, in Canada and around the world; we needed to create a culture of care. Nova Scotian’s heard us, and we are moving towards this paradigm shift. We are in the beginning stage of creating a new care environment that supports this model.  We are now building a single family room design versus our previous open-bay concept. This is a space for families to stay close to their babies; however, new spaces and new ways of doing things always create challenges. How would we educate families and engage them in this new space? How would we support them and ensure they didn't feel alone? We needed to find solutions. And this is where I come full circle -- because I believe balancing human touch NICUwith technology is the answer. I am excited to be the Scientific Director for Chez NICU Home, a multi-million dollar Innovation Project funded by ACOA (Atlantic Canada Opportunity Agency), Cisco Systems and the IWK Health Centre. Our aim will be to create a health Solution to address learning and communication needs, keep families together, and improve efficiencies in the health care system. The backbone of Chez NICU will be a sophisticated, secure, virtual environment, housing an evidence based interactive library, as well as a communication platform that will seamlessly link parents and IWK professionals to each other and to the homes of their families, their local health professionals and others who are supporting them, no matter where they are.

So looking back to Jack, what does this mean? Remember those 1,100 pokes and needles and more than 2,000 hours of maternal separation?  It means Jack wouldn't have had to endure alone. It means his parents would have the knowledge, support skills, and resources, to be an integral part of his care. The message I want to leave you with is that parental presence and human touch is not just a nice thing -- it has been scientifically proven to dramatically change outcomes for babies like Jack. My hope for health care is that babies requiring neonatal care will have the best of both worlds: technology and touch. 

Marsha Campbell-Yeo is an Associate Professor of Nursing at Dalhouise University and clinician scientist at the IWK Health Centre. She is internationally recognized for her contributuions towards improving outcomes in vulnerable newborns. Her work represents a paradigm shift in care delivery by fully integrating mothers and families in everyday care. She investigates maternal driven interventions to improve outcomes of medically at risk newborns specifically related to pain, stress and neurodevelopment.

Virophysics - Catherine Beauchemin

Catherine BeaucheminVirophysics is a term I coined to describe my research which consists of applying the tools and methodology of physics to study viruses and virus infections. In physics, knowledge is pursued through experiments and theory working synergistically. Experiments uncover new phenomena, and verify or refute existing theories. In return, theoretical work provides an understanding of experimental observations and makes predictions, sometimes well ahead of the technology required to make such discoveries.

In contrast, biological and health research has been advanced primarily through experimental observations, and this imbalance causes some issues. Without a theoretical framework, it is impossible to make predictions and to extrapolate findings beyond existing experimental observations. Without quantitative models, like F=ma or E=mc2, it is also hard or impossible to differentiate between a genuine departure from theoretical expectations, meaning a discovery, and a faulty experiment. This is largely to blame for the lack of reproducibility in biological and health sciences.

Research in virophysics attempts to address this imbalance through the development of mathematical and computer models (or laws) to quantitatively describe the mechanisms at play in a virus infection, and to predict their course and outcome. The process of model development begins by listening to virologists and microbiologists, and scouring the literature, to translate the known or hypothesized aspects of the infection process into a set of mathematical expressions. The more complete and detailed the theoretical model, the more parameters it has. For example, if the behaviour of a newly infected cell is different from that of a cell that has been infected for a while, this age of infection must be added explicitly in the theoretical model. Should the cell shift smoothly from one state to the other as it ages?  At what rate? When? The process of model-building itself raises many questions, most of which are not yet resolved. So even the very early process of constructing the model is valuable in identifying gaps in our knowledge. But this can also quickly start to feel like a losing battle. One concern is parameter identifiability, i.e. can we accurately resolve the value of all the model parameters? Another is parameter degeneracy: in some experiments, having twice as many cells produce half as much virus looks the same as having half as many cells produce twice as much virus. Because the field is in its infancy, current experimental methodology is often not suited to collect the type of data required for robust, quantitative analyses. As such, the difficulty in this field lies in identifying a good infection system and a relevant question. My attention over the last 13 years or so has been primarily focused on influenza A virus infections. To reduce the complexity of the task, I study almost exclusively in vitro infection, i.e. infections conducted in largely homogeneous laboratory cell cultures, mostly devoid of complicating host or immune factors.

Over the last several years, we developed a mathematical and computational modelling framework for influenza A virus infections in vitro. We refined the model by confronting it with published data sets to ensure it can reproduce the range of infection kinetic patterns observed under different experimental conditions. Over time, we identified a set of 3 experiments that together provide a complete set of independent information. In the “mock yield” assay, virus samples are incubated in the absence of cells, as the concentration of total and infectious virus over time is measured. It provides information about the manner and rate at which virus naturally degrades over time and loses its ability to infect cells. In the “single-cycle” assay, cells are incubated with enough infectious virus to infect all cells at once, after which the input virus is promptly rinsed. Because infection of all cells is synchronized in this manner, the collective behaviour of all cells in the assay corresponds to the average of that of a single infected cell. It provides information about the time at which an infected cell will start and then cease virus production, and the rate of virus production per cell. In the “multiple-cycle” assay, cells are incubated with very few infectious virus, and these initially infected cells go on to infect others, which infect others, and so on, providing information about the rate and timing of virus spread.

The resulting toolkit, consisting of our computational modelling analysis of data from these 3 experiments, enables us to fully characterize any influenza A virus strain. For example, by conducting the experiment on a wild-type strain and its drug-resistant counterpart, we can determine exactly what aspects of the virus infection are affected by the mutation and by how many folds (e.g., this mutation allows infected cells to produce 3x more virus than those infected by the wild-type). By conducting the experiment in the presence and absence of a new antiviral drug, we can establish which step of the virus infection is affected by the drug, and the dependence on the dose administered. This makes it possible to predict the likelihood and likely timing of the appearance of drug resistance, or to make recommendations on optimal dose and treatment duration.

Our successes in these particular problems have generated a lot of interest and we are now hard at work to expand our methodology to other viruses like HIV and the respiratory syncytial virus. We are also looking to improve our model to increase the level of detail, for example adding the intracellular process of virus replication, and to improve experimental methodology to yield more robust, accurate experimental measurements. But there is so much to be done, and physicists are ideally trained to tackle these types of problems. I hope my induction into the College of the RSC will give my research the visibility required to capture the attention of more physicist and to recruit them into this exciting new field.

Catherine Beauchemin a fondé le domaine de la virophysique une branche de la biophysique qui met les outils théoriques et la rigueur quantitative de la physique au profit de la virologie. Son exploitation novatrice de modelés mathématique et de system multi-agent pour analyser la dynamique d’infections virales a entrainé des progresse significatifs en virologie théorique une meilleure compréhension des mécanismes clés des infections grippales et lui vaut sa réputation internationale.